

ISIR Journal of Arts, Humanities and Social Sciences (ISIRJAHSS)

ISSN: 3048-7463 (Online) Frequency: Bimonthly Published By ISIR Publisher

Journal Homepage Link- https://isirpublisher.com/isirjahss-home/

ON MATHEMATICAL LITERACY AND PHILOSOPHY OF MATHEMATICS EDUCATION

BY

Syahrullah Asyari

Department of Mathematics Education, Universitas Negeri Makassar, Indonesia

Article History

Received: 05/11/2025 Accepted: 18/11/2025 Published: 20/11/2025

Vol - 2 Issue - 6

PP: -42-49 DOI:10.5281/zenodo. 17656683

Abstract

This conceptual meta-synthesis explores the intersections between mathematical literacy and the philosophy of mathematics education, revealing how these two fields mutually enrich the theoretical and practical dimensions of mathematics teaching and learning. Mathematical literacy, traditionally understood as the ability to use mathematics for solving real-world problems, has evolved into a multidimensional construct encompassing reasoning, communication, reflection, and ethical awareness. Meanwhile, the philosophy of mathematics education interrogates the epistemological, ontological, and axiological foundations of mathematics, emphasizing its nature as a human and cultural practice rather than a static system of truths. By integrating philosophical perspectives—particularly constructivism, fallibilism, and socioepistemology-this study argues for a humanistic reconceptualization of mathematical literacy that values context, culture, and reflection. Through an interpretive synthesis of recent international literature, the study identifies three key domains of convergence: epistemological alignment, cultural-ethical grounding, and reflective technological mediation. It concludes that embedding philosophical inquiry into mathematical literacy enhances not only cognitive competence but also moral and cultural consciousness, positioning mathematics education as a transformative endeavor that empowers learners to interpret and reshape their world through reflective reasoning.

Keywords: mathematical literacy, philosophy of mathematics education, constructivism, socioepistemology, ethnomathematics, reflective teaching

A. INTRODUCTION

In recent decades, the discourse on mathematical literacy and the philosophy of mathematics education has become increasingly interwoven, reflecting profound questions about what it means to know, to learn, and to use mathematics in human life. Mathematical literacy, once limited to procedural and computational competence, has evolved into a multifaceted construct encompassing reasoning, problem solving, communication, and reflective thinking within authentic contexts (Sikko, 2023; Kaiser & Willander, 2005; Kolar & Hodnik, 2021; Maslihah et. al., 2020). This conceptual expansion marks a shift from mathematics as a static, objective body of truths toward mathematics as a human and cultural activity (Ernest, 1989; Rosa & Orey, 2013; Hamami, 2025). It implies that understanding mathematics involves not only cognitive mastery but also awareness of its social and ethical dimensions.

Mathematical literacy, as defined by the Programme for International Student Assessment (PISA), is the ability to formulate, apply, and interpret mathematics in various realworld situations (North, 2023; Kolar & Hodnik, 2021). It integrates conceptual understanding, procedural fluency, strategic reasoning, and communication to solve contextual problems (Kaiser & Willander, 2005; Büscher & Prediger, 2019; Sikko, 2023). Students with high mathematical literacy exhibit flexibility in representing problems mathematically, selecting appropriate strategies, and evaluating reasonableness of results. This view connects cognitive proficiency with social responsibility, positioning mathematics as both a language for reasoning and a lens for interpreting reality.

Parallel to this development, the philosophy of mathematics education examines the ontological and epistemological foundations of mathematical knowledge—how mathematical truths are constructed, justified, and taught (Ernest, 1985; Rowlands et. al., 2011; Reyes-Gasperini & Cantoral, 2014; Ernest, 2015; Hamami, 2025). Foundational schools such as logicism, formalism, and intuitionism once dominated the discourse, but more recent perspectives like constructivism,

fallibilism, and socioepistemology have reframed mathematics as a social, historical, and dialogical activity. This reconceptualization aligns closely with the goals of mathematical literacy, emphasizing learning as a process of meaning-making and human interaction rather than passive reception of absolute knowledge.

In the twenty-first century, the convergence between mathematical literacy and the philosophy of mathematics education has become central to reimagining global education. Challenges such as technological change, inequality, and cultural diversity demand educational paradigms that are both philosophically grounded and practically responsive (Nunez, 2015; Adams et. al., 2025; Vimbelo & Bayaga, 2023). Approaches like ethnomathematics and critical pedagogy exemplify this synthesis by positioning mathematics as a tool for empowerment, reflection, and social justice (Rosa & Orey, 2013; Wildfeuer, 2022; Kokka, 2022; Suh et. al., 2024). Consequently, mathematics education is increasingly viewed as a humanistic and reflective endeavor that connects reasoning with responsibility and cognition with culture.

B. METHODS

This study employed a *conceptual meta-synthesis* approach that integrates findings and theoretical discussions across multiple domains—mathematical literacy, philosophy of mathematics education, and reflective pedagogy. The aim was not merely to summarize existing literature, but to identify philosophical foundations, interpretive linkages, and transformative implications for mathematics education (Ernest, 2015; Bicudo et. al., 2023). The synthesis draws upon meta-analytic reasoning, critical interpretation, and hermeneutic reflection to trace conceptual intersections and emerging paradigms relevant to both theory and practice.

The literature analyzed in this study was drawn from peerreviewed international journals indexed in Scopus and other reputable databases between 2000 and 2025. The selection prioritized works that explicitly discussed (a) the construct of mathematical literacy, (b) philosophical foundations of mathematics education, and (c) their pedagogical intersections in digital, cultural, or reflective contexts (Sikko, 2023; North, 2023; Rosa & Orey, 2013; Hamami, 2025). Key authors such as Paul Ernest, Raymond Duval, D'Ambrosio, and Cantoral provided the philosophical anchors for interpretation, while contemporary studies offered empirical and contextual grounding (Reyes-Gasperini & Cantoral, 2014; Pratama & Yelken, 2024; Harding, 2022).

To ensure comprehensiveness, 65 references were examined, covering subfields including ethnomathematics, socioepistemology, critical pedagogy, reflective practice, and technology-mediated learning. The process of inclusion involved three major stages: (1) identification of conceptual overlaps between literacy and philosophy, (2) evaluation of methodological relevance to mathematics education, and (3) extraction of philosophical propositions contributing to reflective and ethical dimensions of mathematical learning

(Kaiser & Willander, 2005; Büscher & Prediger, 2019; Nunez, 2015).

The analysis followed an interpretive synthesis framework adapted from Noblit and Hare's meta-ethnography (1988), consisting of translation, synthesis, and theorization. In the translation phase, conceptual constructs from diverse studies were compared and categorized into thematic clusters: reasoning and reflection, epistemological orientations, and pedagogical applications. During the synthesis phase, recurring philosophical and pedagogical principles were integrated to produce a coherent interpretive narrative (Ernest, 1989; Goos, 2013). Finally, in the theorization phase, these insights were reformulated into higher-level propositions about how philosophical inquiry can inform mathematical literacy and vice versa (Reinke & Casto, 2022; Boadu & Bonyah, 2024).

The validity of interpretation was strengthened through triangulation across sources—cross-comparing theoretical writings, empirical studies, and policy documents from OECD and UNESCO reports (North, 2023; O'Sullivan et. al., 2025). Rather than adopting a purely descriptive review, this synthesis employed a reflexive stance that recognized the interpretive nature of philosophical discourse and its contextual embedding in educational practices (Hamami, 2025; Rosa & Orey, 2013).

This meta-synthesis was grounded in a *constructivist and socioepistemological paradigm* that conceives mathematical knowledge as socially negotiated and contextually situated (Reyes-Gasperini & Cantoral, 2014; Ernest, 1989). It assumes that mathematics education cannot be fully understood apart from its philosophical underpinnings—particularly those addressing the nature of truth, meaning, and justification in mathematical activity (Ernest, 2015; Hamami, 2025). The philosophical lens guided not only the identification of key themes but also the interpretation of how these themes converge into pedagogical implications.

The methodological stance, consequently, integrates philosophical reasoning with empirical sensitivity. This dual orientation enables a balanced synthesis that honors both the abstract rigor of philosophical reflection and the contextual richness of classroom research (Bicudo et al., 2023; Kaiser & Willander, 2005). The outcome is an interpretive framework that situates mathematical literacy within a broader epistemological narrative, highlighting its role as a bridge between cognitive skill, ethical reflection, and social transformation.

C. RESULTS AND DISCUSSION

The synthesis of literature reveals three major domains of convergence between mathematical literacy and the philosophy of mathematics education: (1) epistemological alignment between constructivist learning and philosophical fallibilism, (2) the cultural and ethical grounding of mathematical literacy through philosophical and ethnomathematical perspectives, and (3) the reflective

transformation of teaching and assessment practices. Each of these domains reflects the progressive integration of cognitive, social, and ethical dimensions in mathematics education (Ernest, 1989; Rosa & Orey, 2013; Hamami, 2025). Collectively, these findings affirm that mathematical literacy and philosophical reflection are inseparable in promoting reasoning, understanding, and responsible participation in society.

1. Epistemological Alignment: Constructivism and Fallibilism

The first domain highlights the epistemological synergy between constructivism—emphasizing learning as the active construction of knowledge—and fallibilism, which views mathematical knowledge as provisional and subject to human interpretation (Ernest, 1985; Rowlands et. al., 2011; Ernest, 2015). Both traditions reject absolutist notions of truth in favor of dynamic understanding, positioning learners as active agents who negotiate meaning rather than absorb fixed rules. In classroom contexts, this perspective manifests in inquiry-based learning, dialogical interaction, and student reflection (Goos, 2013; Reinke & Casto, 2022). Such approaches strengthen mathematical literacy by linking conceptual understanding with epistemic awareness—encouraging students to see mathematics not only as formal reasoning but as a process of questioning and justification.

2. Cultural and Ethical Grounding: Ethnomathematics and Critical Pedagogy

The second domain underscores the cultural and ethical grounding of mathematical literacy through the infusion of ethnomathematics and critical pedagogy. Ethnomathematics asserts that mathematical ideas are embedded within cultural practices and linguistic systems (Rosa & Orey, 2013; Harding, 2022). It validates indigenous and local forms of reasoning, thereby expanding the scope of what counts as mathematical knowledge (Wildfeuer, 2022; Wulandari et. al., 2024). Critical pedagogy complements this view by emphasizing mathematics as a means of empowerment and social justice, enabling learners to critique societal inequalities through quantitative reasoning (Adams et. al., 2025; Kokka, 2022; Suh et. al., 2024). Together, these perspectives deepen mathematical literacy by linking problem-solving to cultural identity and ethical engagement.

3. Reflective and Technological Transformation in Practice

The third domain of findings concerns the integration of reflective thinking and digital technology into the development of mathematical literacy. Reflective practice enables learners to monitor and evaluate their own understanding, thereby enhancing metacognitive control and reasoning quality (Büscher & Prediger, 2019; Ratnaningsih & Hidayat, 2020). Simultaneously, digital technologies such as augmented reality, dynamic geometry tools, and AI-based platforms create interactive environments that support visualization and exploration of mathematical concepts (Dick & Burrill, 2019; Hasanah et. al., 2024; Muhaimin et. al.,

2025). When guided by philosophical inquiry, such tools promote not only efficiency but also reflection, creativity, and ethical awareness (Pinheiro & Santos, 2025; Trishaank et. al., 2025). These innovations transform mathematical literacy into a multidimensional competence encompassing reasoning, technology, and values.

4. Integration in Teacher Professional Development

The synthesis also identifies the pivotal role of teacher beliefs and professional development in linking literacy and philosophy. Teachers' epistemological orientations—whether absolutist, constructivist, or socioepistemological—directly influence how they design tasks and interpret students' learning processes (Obreque & Andalon, 2020; Reyes-Gasperini & Cantoral, 2014). Professional learning communities and reflective lesson studies that incorporate philosophical discussions enhance teachers' capacity to scaffold reasoning, dialogue, and critical reflection (Park et. al., 2018; Vaughn & de Beer, 2020). As a result, teachers move from delivering knowledge to facilitating mathematical inquiry, aligning with the broader philosophical aim of cultivating autonomy and ethical judgment in learners (Gellert, 2008; Roesken, 2011).

5. Conceptual Frameworks Emerging from the Synthesis

Finally, the integration of these findings leads to the emergence of new conceptual frameworks that unify mathematical reasoning, reflection, and philosophical inquiry. Models such as RECCE-MODEL and LEPscO articulate coherent pathways linking problem-solving, technology, and socio-cultural responsiveness (Gustiningsi et. al., 2024; O'Sullivan et. al., 2025). These frameworks operationalize philosophical assumptions—such as contextual meaning and fallibility—into pedagogical design principles. By doing so, they position mathematical literacy as a holistic educational construct that prepares learners to think critically, act ethically, and engage meaningfully with the challenges of the 21st century (Nunez, 2015; Vimbelo & Bayaga, 2023).

The synthesis of results demonstrates that mathematical literacy and the philosophy of mathematics education are not merely adjacent fields but mutually constitutive frameworks that inform how mathematics is understood, taught, and valued. Philosophical inquiry provides the normative and epistemological grounding for mathematical literacy, while literacy research offers empirical validation and pedagogical direction for philosophical concepts (Ernest, 1989; Rosa & Orey, 2013; Hamami, 2025). This reciprocal relationship redefines mathematics education as a reflective, ethical, and transformative practice. By integrating the cognitive, cultural, and moral dimensions of learning, it moves beyond the narrow goal of procedural competence toward the broader purpose of cultivating human judgment and social awareness.

1. Reconceptualizing Knowledge: From Absolutism to Humanism

One of the most significant implications of this integration lies in the reconceptualization of mathematical knowledge itself. Traditional absolutist views portray mathematics as infallible and detached from human experience, whereas constructivism and fallibilism reveal it as a dynamic and evolving human enterprise (Ernest, 1985; Rowlands et. al., 2011; Reyes-Gasperini & Cantoral, 2014). This philosophical shift resonates strongly with the goals of mathematical literacy, which encourage learners to contextualize, critique, and apply mathematics within meaningful settings (Sikko, 2023; North, 2023). Through this lens, understanding mathematics becomes an act of participation in knowledge creation—an epistemic process that nurtures autonomy, critical thinking, and empathy. Thus, philosophy transforms mathematical literacy from a skill-based outcome into a reflective and ethical engagement with the world.

2. Bridging Culture, Ethics, and Learning

The discussion also reveals that mathematical literacy achieves its fullest expression when grounded in cultural and ethical awareness. Ethnomathematics and culturally responsive pedagogies affirm that mathematical reasoning is inseparable from local ways of knowing, linguistic traditions, and community practices (Rosa & Orey, 2013; Harding, 2022; Wildfeuer, 2022). When teachers and students recognize the cultural nature of mathematics, learning becomes an act of identity formation and moral reflection (Pratama & Yelken, 2024; Wulandari et. al., 2024). Furthermore, critical pedagogy situates mathematical literacy as a tool for questioning power relations, unveiling how quantitative data, algorithms, and models shape social realities (Adams et. al., 2025; Kokka, 2022; Suh et. al., 2024). This integration produces a culturally and ethically responsive mathematics education that empowers learners to use mathematics not only to describe the world but to transform it.

3. Reflective Thinking and Technological Mediation

Reflective thinking emerges as a central connector between philosophical reflection and literacy-oriented pedagogy. Philosophically, reflection corresponds to self-awareness of one's reasoning, while educationally it translates into metacognitive strategies that enhance understanding and selfregulation (Büscher & Prediger, 2019; Goos, 2013). Technological tools-ranging from augmented reality to AIbased environments—extend these reflective opportunities by providing interactive, feedback-rich learning experiences (Dick & Burrill, 2019; Hasanah et. al., 2024; Muhaimin et. al., 2025). However, these tools also require philosophical scrutiny to prevent their misuse as mechanistic substitutes for human reasoning (Pinheiro & Santos, 2025; Trishaank et. al., 2025). When informed by philosophical inquiry, technology becomes a medium for cultivating deeper understanding, creativity, and ethical judgment rather than mere procedural fluency.

4. Teachers as Philosophical Practitioners

The philosophical grounding of mathematical literacy transforms the role of the teacher from knowledge transmitter to reflective facilitator. Teachers' epistemological beliefs about the nature of mathematics profoundly shape their classroom practices and interactions with students (Obreque & Andalon, 2020; Ernest, 2015). Professional development models that integrate reflective dialogue, philosophical inquiry, and collaborative problem solving enable teachers to connect literacy goals with moral and cultural dimensions of learning (Park et. al., 2018; Vaughn & de Beer, 2020). Through such approaches, teachers internalize philosophical orientations—such as fallibilism and socioepistemology—that help them guide learners toward responsible reasoning and ethical decision-making (Reyes-Gasperini & Cantoral, 2014; Gellert, 2008). Hence, teacher education becomes a philosophical endeavor aimed at fostering both intellectual and moral formation.

5. Toward a Holistic Framework for Future Mathematics Education

The intersection of literacy and philosophy points toward the emergence of a holistic educational framework. This framework integrates cognitive reasoning, socio-cultural understanding, reflective practice, and ethical consciousness (Gustiningsi et. al., 2024; O'Sullivan et. al., 2025). It supports mathematics education that is context-sensitive, technologically enhanced, and philosophically coherentpreparing learners to navigate complexity in a rapidly changing world (Vimbelo & Bayaga, 2023; Nunez, 2015). By adopting such a framework, mathematics education can evolve into a space of dialogical inquiry, where philosophy and literacy converge to shape not only capable problem solvers but also thoughtful, compassionate citizens. This transformation represents a paradigm shift from mathematics as content to mathematics as human practice, aligning educational goals with the moral and intellectual development of learners.

D. CONCLUSION

This conceptual meta-synthesis concludes that the intersection between mathematical literacy and the philosophy of mathematics education represents a paradigm shift in how mathematics is conceptualized, taught, and experienced. Mathematical literacy, when grounded in philosophical inquiry, transcends its instrumental role and becomes a reflective, ethical, and transformative practice (Ernest, 1989; Rosa & Orey, 2013; Hamami, 2025). Likewise, philosophy of mathematics education gains pedagogical vitality when its abstract ideas-such as fallibilism, constructivism, and socioepistemology-are operationalized through literacyoriented curricula and reflective teaching (Reyes-Gasperini & Cantoral, 2014; Ernest, 2015). This reciprocal enrichment redefines mathematics education as a humanistic discipline that integrates reasoning with culture, cognition with ethics, and reflection with action.

The synthesis affirms that integrating philosophical reflection within mathematical literacy fosters not only higher-order cognitive skills but also critical awareness of the social and moral implications of mathematical activity. Learners who engage with mathematics as a human practice—rather than as fixed procedural knowledge—develop the capacity to reason ethically, communicate effectively, and act responsibly within their communities (Rosa & Orey, 2013; Harding, 2022; Wildfeuer, 2022). Philosophical perspectives such as constructivism and critical pedagogy encourage the coconstruction of knowledge, enabling mathematics to serve as both an intellectual discipline and a medium of emancipation (Adams et. al., 2025; Kokka, 2022; Suh et. al., 2024). Hence, the integration of literacy and philosophy contributes to the cultivation of thoughtful and socially conscious mathematical citizens.

The growing role of digital technology adds a new dimension to this integration. When applied within a philosophically informed framework, digital tools such as augmented reality, dynamic simulations, and AI-based learning environments can enhance reflection, creativity, and collaborative inquiry (Dick & Burrill, 2019; Hasanah et. al., 2024; Muhaimin et. al., 2025). However, this advancement requires ethical vigilance to ensure that technology amplifies human reasoning rather than mechanizes it (Pinheiro & Santos, 2025; Trishaank et. al., 2025). Thus, future mathematics education should embrace *philosophically informed digital literacy*—a paradigm that unites innovation with reflection, and progress with responsibility.

At the policy and institutional levels, reform should aim to institutionalize reflective, culturally responsive, and technology-enhanced practices in mathematics curricula. Teacher education must be reconceptualized as a philosophical enterprise that cultivates inquiry, empathy, and ethical awareness among practitioners (Park et. al., 2018; Vaughn & de Beer, 2020). Policies should likewise support equity and social justice by ensuring that mathematical literacy becomes a lifelong, inclusive, and empowering pursuit (Nunez, 2015; Vimbelo & Bayaga, 2023). By aligning philosophical reflection, pedagogical innovation, and systemic transformation, mathematics education can fulfill its potential as both an intellectual pursuit and a moral commitment to humanity.

Ultimately, the integration of mathematical literacy and the philosophy of mathematics education envisions a future where mathematics is recognized not merely as a language of precision, but as a language of meaning, dialogue, and care. It calls for educators and researchers to construct *integrated frameworks* that are epistemologically sound, culturally grounded, and ethically responsive (Gustiningsi et. al., 2024; O'Sullivan et. al., 2025). In this vision, mathematics becomes a space of human encounter—where reasoning coexists with compassion, and learning becomes an act of transforming both the self and society.

REFERENCES

1. Adams, G., Povey, H., & Demissie, F. (2025). Working with primary teachers in England on mathematics teaching for citizenship: Critical and

- *philosophical approaches*. In Troubling Notions of Global Citizenship and Diversity in Mathematics Education.
- https://www.taylorfrancis.com/chapters/edit/10.432 4/9781003130673-17/working-primary-teachersengland-mathematics-teaching-citizenship-gilladams-hilary-povey-fufy-demissie
- Ardiansyah, A., Degeng, I. N. S., Kuswandi, D., & Praherdhiono, H. (2025). A new model for blended learning in Islamic higher education: Integrating peer instruction with just-in-time teaching. Turkish Online Journal of Distance Education, 26(3): 192-216. https://doi.org/10.17718/tojde.1533067
- Asmara, A. S., Waluya, S. B., Suyitno, H., Junaedi, I., & Ardiyanti, Y. (2024). Developing patterns of students' mathematical literacy processes: Insights from cognitive load theory and design-based research. *Infinity Journal*, 13(1): 197-214. https://doi.org/10.22460/infinity.v13i1.p197-214
- Bicudo, M. A. V., Czarnocha, B., Rosa, M., & Marciniak, M. (Eds.) (2023). Philosophy of mathematical practice and education in digital contexts. Springer. https://doi.org/10.1007/978-3-031-35209-6
- Boadu, S. K., & Bonyah, E. (2024). The role of philosophy of mathematics education in mathematics teacher education. *Cogent Education*, 11(1).
 - https://doi.org/10.1080/2331186X.2024.2433832
- Büscher, C., & Prediger, S. (2019). Students' reflective concepts when reflecting on statistical measures—A design research study. *Journal für Mathematik-Didaktik*, 40, 197–225. https://doi.org/10.1007/s13138-019-00142-2
- Dick, T. P. & Burrill, G. F. (2019). Design and Implementation Principles for Dynamic Interactive Mathematics Technologies. In I. Management Association (Ed.), TPACK: Breakthroughs in Research and Practice (pp. 372-400). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-5225-7918-2.ch018
- 8. Ernest, P. (1985). The philosophy of mathematics and mathematics education. *International Journal of Mathematical Education in Science and Technology*, 16(5), 603–612. https://doi.org/10.1080/0020739850160505
- 9. Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. https://webdoc.sub.gwdg.de/edoc/e/pome/impact.ht m
- Ernest, P. (2015). The Philosophy of Mathematics Education: Stephen Lerman's Contributions. In: Gates, P., Jorgensen (Zevenbergen), R. (eds) Shifts in the Field of Mathematics Education. Springer. https://doi.org/10.1007/978-981-287-179-4_14
- Fernández-Oliveras, A., Blanco-Álvarez, H., & Oliveras, M. L. (2021). Aplicación de un instrumento para valorar la idoneidad didáctica

- etnomatemática a una propuesta de enseñanza aprendizaje sobre patrones de medida no convencionales [Application of an instrument to assess the ethnomathematical didactic suitability of a teaching—learning proposal on unconventional measurement patterns]. *Bolema: Boletim de Educação Matemática*, 35(71): 1845–1875. https://doi.org/10.1590/1980-4415v35n71a28
- 12. Flórez-Pabón, C. E. (2020). Dynamic geometry and square of the circle in Thomas Hobbes. *Journal of Physics: Conference Series*, 514012023. https://doi.org/10.1088/1742-6596/1514/1/012023
- Geiger, V., Goos, M., & Dole, S. (2015). The Role of Digital Technologies in Numeracy Teaching and Learning. *International Journal of Science and Mathematics Education*, 13, 1115–1137. https://doi.org/10.1007/s10763-014-9530-4
- Gellert, U. (2008). Validity and relevance: comparing and combining two sociological perspectives on mathematics classroom practice.
 ZDM Mathematics Education, 40, 215–224. https://doi.org/10.1007/s11858-008-0074-3
- Goos, M. (2013). Sociocultural perspectives in research on and with mathematics teachers: a zone theory approach. *ZDM Mathematics Education*, 45, 521–533. https://doi.org/10.1007/s11858-012-0477-
- Gustiningsi, T., Putri, R. I. I., Zulkardi, & Hapizah.
 (2024). LEPscO: Mathematical literacy learning environment for the Guru Penggerak program. *Journal on Mathematics Education*, 15(2): 661-682. http://doi.org/10.22342/jme.v15i2.pp661-682
- 17. Hamami, Y. (2025). Philosophy of mathematical practice and mathematics education: Crossfertilization, dialogue, and prospects. *Journal of Mathematical Behavior*, 78, 101208. https://doi.org/10.1016/j.jmathb.2024.101208
- 18. Harding, J. L. (2022). Ethnomathematics affirmed through cognitive mathematics and academic achievement: Quality mathematics teaching and learning benefits. In: Danesi, M. (eds) Handbook of Cognitive Mathematics. Springer. https://doi.org/10.1007/978-3-031-03945-4_5
- Hasanah, N. R., Turmudi, Juandi, D., & Supatmi, S. (2024). 5E-STEM model integration: Enhancing mathematical reflective thinking through 3D and augmented reality (AR). In: Proceedings of the 7th International Conference on Informatics, Engineering, Sciences and Technology (INCITEST), pp. 1-8. https://doi.org/10.1109/INCITEST64888.2024.1112 1487
- Kaiser, G., & Willander, T. (2005). Development of mathematical literacy: Results of an empirical study. *Teaching Mathematics and Its Applications*, 24(2–3): 48–60. https://doi.org/10.1093/teamat/hri016

- 21. Kokka, K. (2022). Toward a theory of affective pedagogical goals for social justice mathematics. *Journal for Research in Mathematics Education*, 53(2): 133-153. https://doi.org/10.5951/jresematheduc-2020-0270
- 22. Kolar, V. M., & Hodnik, T. (2021). Mathematical literacy from the perspective of solving contextual problems. *European Journal of Educational Research*, 10(1): 467-483. https://doi.org/10.12973/eu-jer.10.1.467
- Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. ZDM Mathematics Education,
 https://doi.org/10.1007/BF02655858
- Maslihah, S., Waluya, S. B., Rochmad, & Suyitno, A. (2020). The role of mathematical literacy to improve higher order thinking skills. *Journal of Physics: Conference Series*, 1539 012085. https://doi.org/10.1088/1742-6596/1539/1/012085
- Muhaimin, L. H., Dasari, D., Hendriyanto, A., Andriatna, R., & Sahara, S. (2025). Can augmented reality enhance students' mathematical literacy? A study on technological development for learning practice. *International Journal of Mathematical Education in Science and Technology*, 1–35. https://doi.org/10.1080/0020739X.2025.2502398
- North, M. P. (2023). Curriculum design for empowered life-preparation and citizenship: A sociological analysis of the evolution of the Mathematical Literacy curricula. *Pythagoras*, 45(1): 1-19. https://doi.org/10.4102/pythagoras.v45i1.768
- Nunez, I. (2015). Philosophical Underlabouring for Mathematics Education. *Journal of Critical Realism*, 14(2), 181–204. https://doi.org/10.1179/1476743015Z.000000000060
- Obreque, K.V.S. & Andalon, J. L. (2020). Teachers epistemology on the origin of mathematical knowledge. *Mathematics Teaching Research Journal*, 12(2): 77-81. https://files.eric.ed.gov/fulltext/EJ1384387.pdf
- O'Sullivan, K., O'Meara, N., Goos, M., & Conway, P. (2025). The N framework: A teacher knowledge framework for numeracy across the curriculum. *Numeracy*, 18(2). https://doi.org/10.5038/1936-4660.18.2.1481
- Park, M. S., Kim, Y. R., Moore, T. J., & Wyberg, T. (2018). Professional development framework for secondary mathematics teachers. *International Journal of Learning, Teaching, and Educational Research*, 17(10): 127-151. https://doi.org/10.26803/ijlter.17.10.9
- Pinheiro, M. M. & Santos, V. (2025). Integrating Computational Thinking and Artificial Intelligence into Mathematics Education: A Pathway for the 21st-Century. In: Reis, A., et al. Technology and Innovation in Learning, Teaching and Education. TECH-EDU 2024. Communications in Computer

- *and Information Science*, Vol. 2479. Springer. https://doi.org/10.1007/978-3-032-02675-0_7
- Pratama, R. A. & Yelken, T. Y. (2024). Effectiveness of ethnomathematics-based learning on students' mathematical literacy: a meta-analysis study. *Discover Education*, 3(202). https://doi.org/10.1007/s44217-024-00309-1
- 33. Prediger, S., & Neugebauer, P. (2023). Can students with different language backgrounds profit equally from a language-responsive instructional approach for percentages? Differential effectiveness in a field trial. *Mathematical Thinking and Learning*, 25(1): 2-22.
 - https://doi.org/10.1080/10986065.2021.1919817
- Ratnaningsih, N. & Hidayat, E. (2020). Reflective mathematical thinking process and student errors: an analysis in learning style. *Journal of Physics: Conference Series*, 1613 012037. https://doi.org/10.1088/1742-6596/1613/1/012037
- Reinke, L. T. & Casto, A. R. (2022). Motivators or conceptual foundation? Investigating the development of teachers' conceptions of contextual problems. *Mathematics Education Research Journal*, 34(1): 113-137. https://doi.org/10.1007/s13394-020-00329-8
- Reyes-Gasperini, D. & Cantoral, R. (2014).
 Socioepistemology and empowerment: Teacher professionalization from problematization of mathematical knowledge. Bolema—Mathematics Education Bulletin, 28(49): 360–382.
 http://dx.doi.org/10.1590/1980-4415v28n48a14
- 37. Roesken, B. (2011). Hidden dimensions in the professional development of mathematics teachers: In-service education for and with teachers. SensePublishers Rotterdam. https://doi.org/10.1007/978-94-6091-433-1
- Rojas, E. & Benakli, N. (2020). Mathematical Literacy and Critical Thinking. In: But, J. (eds) Teaching College-Level Disciplinary Literacy. Palgrave Macmillan. https://doi.org/10.1007/978-3-030-39804-0_8
- 39. Rosa, M., & Orey, D. C. (2013). Uma base teórica para fundamentar a existência de influências etnomatemáticas em salas de aula [A theoretical basis to substantiate the existence of ethnomathematical influences in classrooms]. *Currículo sem Fronteiras*, 13(3): 538–560. https://www.curriculosemfronteiras.org/vol13iss3art icles/rosa-orey.pdf
- Rowlands, S., Graham, T. & Berry, J. (2011). Problems with Fallibilism as a Philosophy of Mathematics Education. *Science & Education*, 20, 625–654. https://doi.org/10.1007/s11191-010-9234-2
- 41. Sikko, S. A. (2023). What can we learn from the different understandings of mathematical literacy? *Numeracy*, 16(1). https://doi.org/10.5038/1936-4660.16.1.1410

- 42. Suh, J., Aguirre, J., Turner, E., Carlson, M. A., Fulton, E., Tate, H., & McVicar, E. (2024). Exploring racial justice with culturally responsive mathematical modeling in the primary grades: Cultivating criticality in the problem-based learning space. *Interdisciplinary Journal of Problem-based Learning* (*IJPBL*),18(1):1–19. https://doi.org/10.14434/jipbl.v18i1.36976
- 43. Tajudin, N. M., Puteh, M., & Adnan, M. (2018). Guiding principles to foster higher-order thinking skills in teaching and learning of mathematics. *International Journal of Engineering and Technology*, 7(4.15): 195–199. https://doi.org/10.14419/ijet.v7i4.15.21445
- 44. Trishaank, K., Kumar, P. K., & Rao, P. R. M. (2025). Integrating computational thinking & design thinking in curriculum development. In: Bindumadhavan, K., Lacey, N. (eds). Work Integrated Learning-Directions for the Future. ICONWIL 2024. Lecture Notes in Networks and Systems, Vol. 1206. Springer. https://doi.org/10.1007/978-981-96-0201-8_6
- Tunstall, S. L. (2020). Measuring numeracy: Validity and the programme for the international assessment of adult competencies (PIAAC). *Numeracy*, 13(2). https://doi.org/10.5038/1936-4660.13.2.1348
- 46. Vaughn, M. S. & de Beer, J. (2020). Contextualising science and mathematics teacher professional development in rural areas. Perspectives in Education, 38(2): 213–226.. https://doi.org/10.38140/pie.v38i2.4955
- 47. Vimbelo, S. W. & Bayaga, A. (2023). Humanising pedagogy in mathematics education at South African Technical and Vocational Education and Training (TVET) colleges: Influence on TVET teaching and learning. *International Journal of Learning, Teaching and Educational Research*, 22(9):633-655. http://dx.doi.org/10.26803/ijlter.22.9.34
- 48. Watkins, N. (2021). Teaching for Social Justice and Sustainable Development Across the Primary. Routledge. https://www.taylorfrancis.com/chapters/edit/10.432 4/9781003003021-11/critical-literacy-niamhwatkins
- Wildfeuer, S. (2022). Ethnomathematics and Cultural Identity to Promote Culturally Responsive Pedagogical Choices for Teachers in Early Childhood and Elementary Education. In: Danesi, M. (eds). *Handbook of Cognitive Mathematics*. Springer. https://doi.org/10.1007/978-3-031-03945-4 1
- Wulandari, I. G. A. P. A., Payadnya, I. P. A. A., Puspadewi, K. R., & Saelee, S. (2024). The role of ethnomathematics in south-east asian learning: A perspective of Indonesian and Thailand educators. Mathematics Teaching Research Journal,

16(3):101-119.

https://files.eric.ed.gov/fulltext/EJ1442348.pdf